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Simple Bounds for the Symmetric Capacity of the
Rayleigh Fading Multiple Access Channel

Elad Domanovitz and Uri Erez , Member, IEEE

Abstract— Communication over the i.i.d. Rayleigh slow-fading
MAC is considered, where all terminals are equipped with a
single antenna. Further, a communication protocol is considered
where all users transmit at (just below) the symmetric capacity
(per user) of the channel, a rate which is fed back (dictated) to
the users by the base station. Tight bounds are established on the
distribution of the rate attained by the protocol. In particular,
these bounds characterize the probability that the dominant face
of the MAC capacity region contains a symmetric rate point,
i.e., that the considered protocol strictly attains the sum capacity
of the channel. The analysis provides a non-asymptotic counter-
part to the diversity-multiplexing tradeoff of the multiple access
channel. We then extend this analysis to general multiple-input
multiple-output MAC and finally, a practical scheme based on
integer-forcing and space-time precoding is shown to be an
effective coding architecture for this communication scenario.

Index Terms— Multiple access, multiple-input multiple-
output (MIMO), Rayleigh channels.

I. INTRODUCTION

IN THIS paper we consider communication over the
slow (block) fading i.i.d. Rayleigh multiple access channel

(MAC). For a given realization of the channel gains, the chan-
nel reduces to the classical Gaussian MAC, the capacity region
of which is well known, see e.g., [1].

A basic criterion for analyzing the performance of different
access methods is the gap from the sum-capacity (the maximal
total rate that can be achieved by all the users). We note
however, that in many cases, the rate distribution between
different users is also of interest and in many applications,
fairness is sought and a scheme which provides (maximal)
equal rate to all users is desired.

The maximal rate that can be achieved in a system where
all users have equal rate is denoted as the symmetric capac-
ity. In case the symmetric and the sum capacity coincide
(alternatively the case where the dominant face of the MAC
capacity region contains a symmetric-rate point), fairness can
be achieved without sacrificing performance. As this is a very
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desirable working point, it is of interest to investigate what is
the probability of this being the case.

Some intuition to that question can be inferred from the
diversity multiplexing tradeoff (DMT) of the i.i.d. Rayleigh
fading MAC which provides an asymptotic analysis of the
symmetric capacity [2]. As we show next, at high val-
ues of signal-to-noise ratio (SNR), the symmetric capacity
approaches the sum capacity with high probability.

In this paper we characterize the behaviour of the symmetric
capacity for finite SNR. From this characterization, the proba-
bility of getting fairness for “free” for all SNRs can be easily
deduced.

Another motivation for studying the symmetric capacity
comes from another design criterion which is the amount of
coordination needed by the protocol. High level of coordina-
tion results in high throughput loss when finite block length
coding is taken into account or increased latency. As the
number of users that are simultaneously transmitting increases
the amount of coordination increases and thus its impact
increases. This is a major issue for new applications being
developed for next generation wireless networks (see, e.g., [3],
[4]) where supporting high number of users is required along
with guaranteeing low latency.

In theory, transmission at rates approaching the symmetric
capacity requires minimal coordination; namely a single para-
meter, the common code rate all users should use. Nonetheless,
when it comes to practical schemes that are able to approach
this operating point, hitherto practical applicable transmission
schemes have relied on a much higher degree of coordination.

Specifically, both time sharing of the points achievable via
successive interference cancellation as well as rate splitting are
asymmetric between the users and thus require coordination.
Furthermore, orthogonal multiple access techniques (e.g., time
or frequency division multiple access) also require coordina-
tion to achieve its maximal achievable symmetric-rate point
which further falls short of the symmetric capacity (unless the
latter coincides with the sum capacity).

The contribution of the present work is two-fold:
1) Establishing (statistical) bounds on the gap between

the symmetric capacity and sum capacity for the
Rayleigh-fading MAC.

2) Proposing a practical scheme that is able to approach the
symmetric capacity with the minimal possible degrees of
coordination. i.e., specification of the common per-user
transmission rate.

These two points have immediate practical implications.
Specifically, we are able to characterize the performance of
a protocol where all users transmit at a rate just below the
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symmetric capacity (per user) of the channel. The underlying
assumption is that the latter rate is dictated to the users by the
base station, utilizing a minimal amount of feedback (which
does not scale with the number of users).

Our first result is an exact characterization of the
performance of the suggested communication protocol, when
assuming an optimal (maximum-likelihood) receiver, for the
two-user case where all nodes are equipped with a single
antenna. We then extend the analysis to the scenario of an
N -user Rayleigh-fading MAC where all nodes are equipped
with a single antenna. For this scenario, we provide inner
and outer bounds on performance. We then further extend the
analysis to a general symmetric i.i.d. Rayleigh multiple-input
multiple-output (MIMO) MAC.

The derived tight characterization of the distribution of
the symmetric capacity can serve as a basis for deriv-
ing other figures of merit (such as the ergodic capacity
or the outage probability for any target rate). It is worth-
while noting that although the problem studied is by now
quite classical, and the derivation relies only on elementary
techniques, the obtained results–given in the from of sim-
ple closed-form expressions–appear to have eluded previous
studies.

Since the complexity of maximum-likelihood (ML) receiver
is prohibitive, we also consider the performance attained by
a practical integer-forcing (IF) receiver, demonstrating that it
performs quite well in the considered scenario. Interestingly,
we observe that in order to approach the symmetric capacity
with an IF receiver, another lesson from the MIMO-MAC
DMT analysis should be followed. Specifically, it is nec-
essary to apply “space-time” precoding at the transmitters
(see, e.g., [5]). We note that other coding approaches have been
proposed to attain the goal of requiring minimal coordination,
see, e.g., [6] and [7].

The rest of this paper is organized as follows. Section II
provides the problem formulation. Section III recounts the
DMT of the i.i.d. Rayleigh-fading MIMO-MAC. As mentioned
above, this asymptotic analysis provides intuition and tools
that are subsequently refined to a full characterization of the
considered communication protocol. In Section IV, the per-
formance of the protocol is analyzed for the case where all
terminals are equipped with a single antenna. In Section V,
bounds are derived for the general case of N users, where each
user has Nt antennas and the receiver is equipped with Nr

antennas. In Section VI, it is demonstrated that an IF receiver
combined with (structured or random) space-time precoding
yields performance that is close to the established theoreti-
cal limits of the proposed communication protocol. Finally,
Section VII concludes the paper.

II. PROBLEM FORMULATION AND PRELIMINARIES

To simplify derivations, we will assume throughout that all
users are equipped with the same number of transmit antennas.
The results can easily be extended to a more general scenario.

Accordingly, we consider a MIMO-MAC with N users,
where each transmitter has Nt antennas and the receiver
is equipped with Nr antennas. The channel model can be

expressed as

y =
N∑

i=1

Hixi + n (1)

where Hi is the channel matrix between user i and the
receiver. We assume an i.i.d. Rayleigh-fading model so that
Hi ∼ CN (0, SNR · INr) and n ∼ CN (0, INr), where there is
no statistical dependence over space nor time.1 We assume that
the transmitted data xi ∈ CNt×1 is isotropic (“white”) for each
user and that all users are subject to the same power constraint
P where the SNR is absorbed in the channel gains. We assume
that channel state information (CSI) is available at the receiver
and we analyze a transmission scheme where the sum-capacity
(defined later) is communicated to the transmitters.

Define a subset of users by S ⊆ {1, 2, . . . , N}. Then, the
capacity region of the channel is given by (see, e.g., [1]) all
rate vectors (R1, . . . , RN ) satisfying∑

i∈S
Ri ≤ C(S)

� log det

(
INr +

∑
i∈S

HiH
H
i

)
, (2)

for all subsets S in the power set of {1, 2, . . . , N}. The sum
capacity is given by

C � C({1, 2, . . . , N}) (3)

= log det

(
INr +

N∑
i=1

HiH
H
i

)
. (4)

If we impose the constraint that all users transmit at the
same rate, then the maximal achievable rate is given by sub-
stituting Ri = CΣ−sym/N in (2), from which it follows that
the symmetric capacity CΣ−sym is dictated by the bottleneck:

CΣ−sym = min
S⊆{1,2,...,N}

N

|S| log det

(
INr +

∑
i∈S

HiHH
i

)
. (5)

We study the conditional “cumulative distribution func-
tion”:2

Pr(CΣ−sym < R|C). (6)

The latter quantity provides a full statistical characterization
of the performance of the transmission protocol considered.
Another interpretation of (6) is as a conditional outage prob-
ability in an open-loop scenario; that is, in a scenario where
all users (when they are active) transmit at a common target
rate R. For a given number of active users N , the outage
probability is then given by E[Pr(CΣ−sym < N ·R|C)] where
the expectation is over C and is computed w.r.t. an i.i.d.
Rayleigh distribution.

1The time index remains implicit since it plays no role in the analy-
sis. Of course, coding over large blocklength is needed to approach the
information-theoretic limits.

2We use quotation marks since we impose strict inequality in
CΣ−sym < R.

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on August 13,2020 at 19:41:54 UTC from IEEE Xplore.  Restrictions apply. 



4596 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 7, JULY 2020

III. LESSONS FROM THE DMT

Some insight into the performance of the considered proto-
col may be obtained by considering the DMT of the symmetric
Rayleigh-fading MIMO-MAC channel, which was studied
in [2]. As a special case, the scenario where all users transmit
at the same rate was considered in detail, for which a simple
expression for the DMT was derived.

We first recall the basic definitions of the DMT framework.
A scheme {C(SNR)} is a family of codes, one at each SNR
level (and single coherence block). Let R(SNR) and Pe(SNR)
denote their data rate (in bits per symbol period) and the ML
probability of detection error, respectively.

Definition 1: Scheme {C(SNR)} is said to achieve spatial
multiplexing gain r and diversity gain d if the data rate

lim
SNR→∞

R(SNR)
log SNR

≥ r,

and the average error probability

lim
SNR→∞

log Pe(SNR)
log SNR

≤ −d.

For each r, define d∗Nt,Nr
(r) to be the supremum of the

diversity gain achieved over all schemes. Equivalently, for
each d, define r∗Nt,Nr

(d) to be the supremum of the multi-
plexing gain achieved over all schemes.

In [8], it was shown that the DMT of the i.i.d. single-user
Rayleigh-fading MIMO channel with Nt transmit antennas and
Nr receive antennas (provided that the block length l ≥ Nt +
Nr + 1)) is a piecewise linear curve such that d∗Nt,Nr

(r) =
(Nt − r)(Nr − r) for every integer r ≤ min(Nt, Nr).

In [2], the DMT of the Rayleigh MIMO-MAC with N users,
where each transmitter has Nt antennas and the receiver has
Nr antennas, and where all users transmit at the same rate,
was shown as

d∗sym(r) =

⎧⎪⎨
⎪⎩

d∗Nt,Nr
(r), r ≤ min(Nt,

Nr

N + 1
)

d∗N ·Nt,Nr
(N · r), r ≥ min(Nt,

Nr

N + 1
)

(7)

where d∗Nt,Nr
(r) is the DMT of the i.i.d. single-user Rayleigh-

fading MIMO channel with Nt transmit antennas and Nr

receive antennas (provided that the block length l ≥ Nt +
Nr + 1); see, e.g., [8]).

Although the DMT analysis is asymptotic in nature (and
assumes no channel state information at the transmitter),
instructive lessons may nonetheless be drawn from it. First,
it is clear that in the limit of high SNR, the ratio of the symmet-
ric capacity and sum capacity approaches one in probability
(since the DMT is strictly positive for any multiplexing gain
smaller than the maximal attainable degrees of freedom).

More importantly, the analysis of the typical error events
in the Rayleigh-fading MAC (with equal-rate transmission)
reveals that with high probability, outage occurs either as if
all users were considered as a single one (“antenna pooling”)
or as a result of a single-user constraint constituting the
bottleneck [2]. These two regimes are reflected in the two
cases appearing in (7).

Further, it can be easily shown that for a scalar MAC
(Nr = Nt = 1) with two or more users, the antenna pooling

Fig. 1. DMT curve for a two-user scalar Rayleigh-fading MAC where all
terminals are equipped with a single antenna.

bottleneck amounts to the probability that the sum-capacity
is below the target rate.3 As for a (symmetric) transmission
protocol where the target rate is set to just below the sum
capacity, the latter type of outage event cannot occur. It follows
that the diversity gain at the maximal multiplexing gain (the
maximal attainable degrees of freedom) is strictly positive.
This in turn implies that the ratio between the symmetric
capacity and the sum capacity will approach 1 quite fast as
the SNR grows.

The DMT for two users is depicted in Figure 1 where the
two bottlenecks mentioned above are shown: the single-user
bottleneck and the “antenna pooling” one, the latter which will
also be referred to as the sum-capacity bottleneck. We adopt
the notation of [8] and plot the diversity as a function of
a normalized multiplexing-gain per user. As detailed in [9],
the number of degrees of freedom afforded by the channel is
the minimum between the “effective” number of transmit and
receiver antennas.

In fact, in the case of two users, we show that perfect
fairness may be gained “for free” with high probability. This
is, the probability that the symmetric capacity is equal to the
sum capacity approaches 1 rather fast as a function of the
SNR; hence, validating the intuition gained from the DMT.

IV. I.I.D. RAYLEIGH-FADING MAC WITH

SINGLE-ANTENNA TERMINALS

When all terminals are equipped with a single antenna,
the Rayleigh-fading MAC is described by

y =
N∑

i=1

hixi + n (8)

3Note that outage probability is defined (Equation 9 in [9]) to (exponentially)
equal the probability that the normalized (isotopic) mutual information is
below that target rate. We further note that when considering the antenna
pooling regime, this normalization amounts to calculating the sum-capacity
of the MIMO-MAC.
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and the symmetric capacity is given by

CΣ−sym = min
S⊆{1,2,...,N}

N

|S| log

(
1 +

∑
i∈S

|hi|2
)

. (9)

A. Two-User i.i.d. Single Antenna Rayleigh-Fading MAC
We begin by analyzing the simplest case of a two-user scalar

MAC, for which we obtain an exact characterization of (6).
Theorem 1: For a two-user i.i.d. Rayleigh-fading MAC with

sum capacity C, for any rate R ≤ C,

Pr(CΣ−sym < R|C) = 2 · 2R/2 − 1
2C − 1

. (10)

Proof: The sum capacity of two-user i.i.d. Rayleigh-fading
is

C = log(1 + |h1|2 + |h2|2) (11)

This means that given C, we have |h1|2 + |h2|2 =
2C−1. Equivalently, this suggests that given C, h � (h1, h2) is
uniformly distributed over a two-dimensional complex sphere
of radius

√
2C − 1. Hence, h/‖h‖ can be viewed as the first

row of a random (Haar) unitary matrix U.
By (9), we obtain

CΣ−sym = min {2C({1}), 2C({2}), C} . (12)

We start by analyzing 2C({1}), which is given by

2C({1}) = 2 log
(
1 + |h1|2

)
= 2 log

(
1 + |U1,1|2(2C − 1)

)
. (13)

It follows that

Pr(2C({1}) < R|C) = Pr

(
|U1,1|2 <

2R/2 − 1
2C − 1

)

= Pr

(
|U1,1|2 ∈

[
0,

2R/2 − 1
2C − 1

))
(14)

Since (see, e.g., [10]) for a 2×2 matrix drawn uniformly with
respect to the Haar measure, we have |U1,1|2 ∼ Unif([0, 1]),
it follows that

Pr(2C({1}) < R|C) =
2R/2 − 1
2C − 1

. (15)

Now, since U1,1 and U1,2 are the elements of a row in a
unitary matrix, we have

|U1,1|2 + |U1,2|2 = 1. (16)

Hence,

Pr(2C({2})<R|C)= Pr

(
|U1,2|2 <

2R/2 − 1
2C − 1

)

= Pr

(
1 − |U1,1|2 <

2R/2 − 1
2C − 1

)

= Pr

(
|U1,1|2∈

(
1− 2R/2−1

2C−1
, 1
])

(17)

Since for any rate R ≤ C, the intervals appearing in (14)
and (17) are disjoint and of the same length, it follows that

Pr(CΣ−sym < R|C) = 2 · 2R/2 − 1
2C − 1

. (18)

Fig. 2. Different capacity regions corresponding to a two-user MAC with
sum capacity C = 2. For the channel depicted with a dashed-dotted line,
the dominant face constitutes the bottleneck and CΣ−sym = C.

Fig. 3. Probability density function of the symmetric capacity of a two-user
i.i.d. Rayleigh-fading MAC given that the sum capacity is C = 2.

We note that the probability in (18) is strictly smaller than 1
at R = C. Thus, the probability that the symmetric capacity
coincides with the sum capacity is strictly positive.

Figure 2 depicts the capacity region for three different
channel realizations for which the sum capacity equals 2. The
probability that the symmetric capacity coincides with the sum
capacity amounts to the probability that the symmetric rate line
passes through the dominant face of the capacity region and
is given by

Pr (CΣ−sym = C|C) = 1 − Pr (CΣ−sym < C|C)

= 1 − 2 · 2C/2 − 1
2C − 1

. (19)

As an example, for C = 2, this probability is 1/3.
Figure 3 depicts the probability density function of the

symmetric capacity of a two-user i.i.d. Rayleigh-fading MAC
given that the sum capacity is C = 2. The probability in (19)
manifests itself as a delta function at the sum capacity.
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B. Extension to the N -User i.i.d. Scalar Rayleigh-Fading
MAC

Theorem 1 may be extended to the case of N > 2 users.
However, rather than obtaining an exact characterization of the
distribution of the symmetric capacity, we will now be content
with deriving lower and upper bounds for it.

Let us define

Pout(k, R|C) � Pr

(
N

k
C(S) < R

∣∣∣C) (20)

We begin with the following lemma which is the key technical
step from which Theorem 2 follows.

Lemma 1: For an N -user i.i.d. Rayleigh-fading MAC with
sum capacity C, and for any subset of users S ⊆ {1, 2, . . . , N}
with cardinality k, we have

Pout(k, R|C) =
B(2R|S|/N−1

2C−1 ; |S|, N − |S|)
B(1; |S|, N − |S|)

where 0 ≤ R ≤ C,

B(x; a, b) =
∫ x

0

ua−1(1 − u)b−1du

is the incomplete beta function (where 0 ≤ x ≤ 1)
Proof: Similar to the case of two users, h � (h1, . . . , hN )

is uniformly distributed over an N -dimensional complex
sphere of radius

√
2C − 1 and hence h/‖h‖ may be viewed as

the first row of a unitary matrix U drawn at random according
to the Haar measure.

By symmetry, for any set S with cardinally k, the distribu-
tion of C(S) is equal to that of

C({1, 2, . . . , k}) = log

(
1 +

k∑
i=1

|hi|2
)

= log

(
1 +

(
2C − 1

) k∑
i=1

|U1,i|2
)

. (21)

Denoting the partial sum of k entries as X =
k∑

i=1

|U1,i|2,

we therefore have

Pr

(
N

k
C(S) < R

∣∣∣C) = Pr
(
1 +

(
2C − 1

)
X < 2R k

N

)

= Pr

(
X <

2R k
N − 1

2C − 1

)
. (22)

We note that the vector (|U1,1|2, . . . , |U1,N |2) follows the
Dirichlet distribution and a partial sum of its entries has a
Jacobi (also referred to as MANOVA) distribution. To see this,
we note that (21) can be written as

N

k
C({1, 2, . . . , k}) =

N

k
log
(
1 + (2C − 1)U(k)1U(k)H

1

)
(23)

where U(k)1 is a vector which contains the first k elements
of the first row of U. Noting that since U(k)1 is a submatrix
of a unitary matrix, its singular values follow (see, e.g., [11])

Fig. 4. Demonstration of the quantities appearing in the bounds appearing
in Theorem 2 for the case of a 4-user i.i.d. Rayleigh-fading MAC with sum
capacity C = 8.

the Jacobi distribution, and more specifically, X has Jacobi
distribution with rank 1. We thus obtain

Pr

(
N

k
C(S) < R

∣∣∣C) =
∫ 2Rk/N −1

2C−1

0

xk−1xN−k−1dλ

=
B
(

2Rk/N−1
2C−1 ; k, N − k

)
B(1; k, N − k)

,

where B(x; a, b) is the incomplete beta function defined.
Theorem 2: For an N -user scalar i.i.d. Rayleigh-fading

MAC, we have

max
k

Pout(k, R|C) ≤ Pr (CΣ−sym < R|C)

≤
N∑

k=1

(
N

k

)
Pout(k, R|C), (24)

where Pout(k, R|C) is defined in (20) and given in Lemma 1.
Proof: To establish the left hand side of the theorem, first

note that CΣ−sym ≤ C(S) for any subset S and hence

CΣ−sym ≤ min
k

N

k
C({1, 2, . . . , k}). (25)

It follows that

Pr
(
CΣ−sym < R

∣∣∣C)
≥ Pr

(
min

k

N

k
C({1, 2, . . . , k}) < R

∣∣∣C)

= Pr

(⋃
k

{
N

k
C({1, 2, . . . , k}) < R

} ∣∣∣C
)

≥ max
k

Pr

(
N

k
C({1, 2, . . . , k}) < R

∣∣∣C)
= max

k
Pout(k, R|C). (26)

The right hand side follows by the union bound.
Figures 4 and 5 illustrate the theorem for the case of

four users (where the markers indicate the height of the delta
functions). As can be seen from Figure 4, already at not very
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Fig. 5. Comparison of empirical evaluation of (9) and Theorem 2 (upper and
lower bounds for the outage probability) for a 4-user i.i.d. Rayleigh-fading
MAC (Nt = Nr = 1) with sum capacity C = 8.

Fig. 6. Comparison of empirical outage and the upper bound of Theorem 2
as the number of users (each equipped with a single antenna) varies. The ratio
between the sum-capacity and log(number of users) is close to 4.

high values of capacity, the single-user constraints already
constitute the bottleneck. We further observe from Figure 5
that the union bound is quite tight.

When comparing bounds and performance as the num-
ber of users varies, it is natural to scale the sum-capacity
logarithmically with the number of users. The reason is
that the (expected) sum capacity will grow in this manner
assuming each user brings its own power. As mentioned above
(when describing intuition gained from DMT analysis), as the
sum-capacity increases, the single-user constraint becomes
ever more the dominant error event. With regards to the upper
bound in Theorem 2, this intuition suggests that the upper
bound should become tighter as the number of users grows
(as the combinatorial coefficient corresponding to a single-user
constraint is only linear in the number of users).

Figure 6 provides a comparison between the empirical
outage probability and the upper bound of Theorem 2 when
the ratio between the sum-capacity and the number of users

is close to 4. As can be seen, as the number of users grows
(and each user “brings its own” power) the probability that
the symmetric capacity is close to the sum-capacity increases.
Further, the gap from the empirical probability and the upper
bound decreases.

V. UPPER BOUND ON THE OUTAGE PROBABILITY FOR THE

SYMMETRIC N -USER RAYLEIGH-FADING MIMO MAC

We now consider the symmetric MIMO-MAC scenario
where each of the N users is equipped with Nt antennas
and the receiver is equipped with Nr antennas. In this case,
the channel as described by (1) can be rewritten as

y = HX + n (27)

where

H =
[
H1 H2 . . . HN

]
and

X =
[
xT
1 xT

2 . . . xT
N

]T
.

Therefore, the symmetric capacity (5) can be expressed as

CΣ−sym = min
S⊆{1,2,...,N}

N

|S| log det
(
I + HH

S HS
)

(28)

where HS is defined as the submatrix of HS generated from
taking only the channel matrices Hi corresponding to user
indices i such that i ∈ S.

In order to leverage the bounds derived for the scalar
MAC scenario, we may use the simple bound (see, e.g. [12],
Equation (5))

log det
(
I + HH

S HS
) ≥ log

(
1 + ‖HS‖2

F

)
, (29)

where ‖A‖F denotes the Frobenius norm of a matrix A.
Denote the “Frobenius-norm mutual information” by

C̃(S) = log
(
1 + ‖HS‖2

F

)
(30)

and

C̃ = log
(
1 + ‖H‖2

F

)
. (31)

It follows that for any channel realization C ≥ C̃ and similarly,
for any subset of users S, we have C(S) ≥ C̃(S).

Considering now the performance of a protocol where all
users transmit at a rate that is just below C̃/N , the counterparts
of Lemma 1 and Theorem 2 are the following.

Lemma 2: For a symmetric N -user Nr × Nt

Rayleigh-fading MIMO-MAC with Frobenius-norm mutual
information C̃, for any subset of users S ⊆ {1, 2, . . . , N}
with cardinality k, we have

Pr

(
N

|S| C̃(S) < R|C̃
)

=
B(2R|S|/N−1

2C̃−1
; |S|NrNt, (N − |S|)NrNt)

B(1; |S|NrNt, (N − |S|)NrNt)
� P̃out(k, R|C̃) (32)

where B(x; a, b) is the incomplete beta function, C̃(S) is
defined in (30) and C̃ is defined in (31).
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Proof: Denoting by hvec the vectorization of H, we have

C̃ = log

(
1 +

NrNtN∑
i=1

|hvec,i|2
)

. (33)

As noted in the previous section, conditioned on C̃,
hvec � (h1, . . . , hNrNtN ) is uniformly distributed over an
NrNtN -dimensional complex sphere of radius

√
2C̃ − 1 and

hence hvec/‖hvec‖ may be viewed as the first row of a unitary
matrix U drawn at random according to the Haar measure.

By symmetry, for any set S with cardinally k, the distribu-
tion of C̃(S) is equal to that of

C̃({1, 2, . . . , k}) = log

(
1 +

NrNtk∑
i=1

|hvec,i|2
)

= log

(
1 +

(
2C̃ − 1

)NrNtk∑
i=1

|U1,i|2
)

. (34)

Denoting the partial sum of k entries as X =
NrNtk∑

i=1

|U1,i|2,

we therefore have

Pr

(
N

k
C̃(S) < R

∣∣∣C̃) = Pr
(
1 +

(
2C̃ − 1

)
X < 2R k

N

)

= Pr

(
X <

2R k
N − 1

2C̃ − 1

)
. (35)

the rest of the proof follows the footsteps of the proof of
Lemma 1.

Theorem 3: For a symmetric N -user Nr × Nt

Rayleigh-fading MIMO-MAC, we have

Pr
(
CΣ−sym < R|C̃

)
≤

N∑
k=1

(
N

k

)
P̃out(k, R|C̃) (36)

Proof: By (29) and (30), for every S and channel
realization, it holds that

C̃(S) ≤ C(S). (37)

Denoting

C̃sym = min
S⊆{1,2,...,N}

N

|S| log
(
1 + ‖HS‖2

F

)
= min

S⊆{1,2,...,N}
N

|S| C̃(S), (38)

we have

Pr
(
CΣ−sym < R

∣∣∣C̃) ≤ Pr
(
C̃sym < R

∣∣∣C̃) , (39)

and similar to Theorem 1, applying the union bound, we get

Pr
(
C̃sym < R

∣∣∣C̃) ≤
N∑

k=1

(
N

k

)
P̃out(k, R|C̃). (40)

Figure 7 depicts a comparison between the empirical outage
probability and the upper bound provided by Theorem 3 for
the case of two users, each equipped with 2 antennas and a
receiver equipped with 3 antennas, where the target rate is set
to 3 bits. The outage probability is depicted as a function of

Fig. 7. Comparison of empirical outage and the upper bound provided by
Theorem 3 for a two-user 3 × 2 i.i.d. Rayleigh-fading MAC. The target rate
is set to 3 bits.

the SNR. The outage probability was evaluated empirically by
Monte-Carlo simulation. To calculate the bound, the Frobenius
norm of each channel matrix drawn was calculated. We recall
that when defining the channel model we assumed that the
SNR is absorbed in the channel gains (i.e., that the channel is
distributed as Hi ∼ CN (0, SNR ·INr)) where now we assume
that the channel is distributed according to the standard i.i.d.
Rayleigh-fading model (Hi ∼ CN (0, ·INr)).

It can seen that at high SNR, the slope of the bound
is similar to that of the empirical results. Recalling the
MIMO-MAC DMT, we note that since the target rate is fixed
(is not a function of the SNR), the slope at high SNR is in fact
the maximal diversity offered in this configuration, i.e., the
diversity corresponding to zero multiplexing gain. Recalling
the DMT of the symmetric capacity (7), the latter is N ·Nr ·Nt

which matches the slope given by Theorem 2. On the other
hand, relying on the Frobenius norm results in a loose bound
at low values of SNR (high outage probabilities).

We may obtain a tighter bound for low SNR values, for the
special case of N = 2 users, where each is equipped with
a single antenna and the receiver is equipped with Nr ≥ 2
antennas. Specifically, in [13] a different upper bound for the
outage probability was derived in the context of a randomly
precoded compound single-user Nr × 2 MIMO channel. It is
easy to verify that the derived bound carries over to the setting
considered in the present paper, when rewritten as follows:4

Theorem 4 (Theorem 2 in [13]): For a two-user i.i.d.
Rayleigh-fading MAC where each user is equipped with a
single antenna and the receiver is equipped with Nr antennas,

Pr (CΣ−sym < R|C) ≤ 1 −
√

1 − 2−(C−R). (41)

The main advantage Theorem 4 with respect to Theorem 3
is that the conditioning is on C, the true sum capacity of the
channel, rather than its Frobenius-norm counterpart.

4The main step is to recall that the SVD decomposition of an i.i.d.
circularly-symmetric complex Gaussian matrix yields left and right singular
vector matrices that are uniformly (Haar) distributed, as is the precoding
matrix considered in the analysis of [13].
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Fig. 8. Comparison of empirical outage and the upper bound provided by
Theorems 3 and 4 for a symmetric two-user 6×1 i.i.d. Rayleigh-fading MAC.
The target rate is set to 3 bits.

Figure 8 depicts the empirical outage probability, the upper
bound of Theorem 3 and the bound of Theorem 4 for the
case of a symmetric two-user 6 × 1 Rayleigh-fading MAC,
where the target rate is set to 3 bits. It can be seen that at low
SNR, Theorem 4 provides a tighter bound than Theorem 3 but
it becomes loose rapidly as it does not capture the maximal
diversity offered by the system.

VI. PRACTICAL REALIZATION OF THE COMMUNICATION

PROTOCOL VIA PRECODED INTEGER FORCING

In this section we empirically demonstrate the effectiveness
of the integer-forcing (IF) receiver when used in conjunction
with unitary space-time precoding as a practical transmission
scheme in the context of the considered communication proto-
col, performance being evaluated assuming long blocklength.
We refer the reader to [14] for a description of the integer
forcing framework and its implementation.

We note that IF has significantly lower complexity com-
pared to maximum-likelihood detection as its complexity does
not scale (exponentially) with the block size. We further
note that the integer-forcing architecture is applicable for all
blocklength, starting from blocklength one (uncoded trans-
mission, in which case it reduces to lattice reduction-aided
decoding). In particular, there are several works which study
the performance of IF with practical codes of finite block size
including [15], [16].

In this section, we highlight several potential improvements
for standard IF and show that when combined with standard
IF, it results with significant improvement. As the suggested
improvements does not depend on the block size, analyzing
performance of IF with short block size for the MAC channel
is left for further study.

When it comes to fading channels, it has been shown
in [14] that the IF receiver achieves the DMT over i.i.d.
Rayleigh-fading channels where the number of receive anten-
nas is greater or equal to the number of transmit antennas.

We observe that this does not hold in the general case;
in particular, IF does not achieve the DMT for the case

Fig. 9. Outage probability of linear codes (with and without space-time
precoding) with IF equalization versus Gaussian codebooks with ML decoding
for a two-user i.i.d. Rayleigh-fading MAC with sum capacity C = 10.

of a MAC where all terminals are equipped with a single
antenna. Specifically, Figure 9 depicts (in logarithmic scale)
the empirical outage probability of the IF receiver and the
exact outage probability for optimal communication (Gaussian
codebooks and ML decoding), as given by Theorem 1, for
the two-user i.i.d. Rayleigh-fading MAC. The symmetric rate
achieved by a given scheme is denoted by Rscheme.

It is evident that the slopes are different. This raises the
question of whether IF is inherently ill-suited for the MAC
channel. A negative answer to this question may be inferred
by recalling some further lessons from the DMT analysis of
the MAC.

While the optimal DMT for the i.i.d. Rayleigh-fading MAC
was derived in [2] using Gaussian codebooks of sufficient
length, it was subsequently shown that the DMT of the MAC
can be achieved using structured codebooks by combining
uncoded QAM constellations with space-time unitary pre-
coding (and ML decoding). Specifically, such a MAC-DMT
achieving construction is given in [5]. This raises the possi-
bility that the sub-optimality of the IF receiver observed in
Figure 9 may at least in part be remedied by applying unitary
space-time precoding at each of the transmitters. We note that
each transmitter applies precoding only to its own data streams
so the distributed nature of the problem is not violated.

Following this approach, we have implemented the IF
receiver with unitary space-time precoding applied at each
transmitter. We have employed random (Haar) precoding (with
independent matrices drawn for the different users) over two
(T = 2) time instances as well as deterministic precoding
using the matrices proposed in [17].5

These matrices can be expressed as

P1
st,c =

1√
5

[
α αφ
ᾱ ᾱφ̄

]
, P2

st,c =
1√
5

[
jα jαφ
ᾱ ᾱφ̄

]
(42)

5When using an ML receiver, this space-time code is known to achieve
the DMT for multiplexing rates r ≤ 1

5
. As detailed in [5], whether this code

achieves the optimal MAC-DMT also when r > 1
5

remains an open question.
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Fig. 10. Probability distribution function of the rate achieved with linear
codes (with and without space-time precoding) in conjunction with IF equal-
ization versus that achieved Gaussian codebooks with ML decoding for a
two-user i.i.d. Rayleigh-fading MAC with sum capacity C = 10.

Fig. 11. Average rate conditioned on the sum capacity when using
linear codes (with and without space-time precoding) with IF equalization
versus Gaussian codebooks with ML decoding, over a two-user normalized
(conditioned) i.i.d. Rayleigh-fading MAC.

where

φ =
1 +

√
5

2
, φ̄ =

1 −√
5

2
α = 1 + j − jφ, ᾱ = 1 + j − jφ̄. (43)

We also replot Figure 9 in terms of PDF (rather than CDF)
as Figure 10, but without random Haar space-time precoding
(so as to avoid “clutter”). As can be seen, the precoding
matrices in (42) improve the outage probability for most target
rates.

We further note that in addition to standard IF, we also
implemented a variant that incorporates successive interference
cancellation, referred to as IF-SIC [18]. As can be seen, IF-SIC
results in a significant improvement for all precoding schemes
used.

In Figure 11 we study the average symmetric rate achieved
by different schemes w.r.t. a two-user i.i.d. Rayleigh-fading
channel when we condition on the sum capacity of the channel.

Fig. 12. Fraction of the sum capacity achieved at 1% outage probability by
the proposed transmission protocol over a scalar i.i.d. Rayleigh-fading MAC.
The performance limits, as captured by by Csym is depicted as a function of
the sum capacity normalized by the number of users, for N = 2, 4, 6 users.
The performance limits of IF-SIC equalization are also depicted.

We plot the fraction of the sum capacity attained by the
various schemes. We first observe that IF-SIC combined with
space-time precoded linear codes achieves a large fraction of
the symmetric capacity. Further, as can be seen, the fraction
of the sum capacity achieved by all the different schemes
considered approaches one as the sum capacity grows.

Finally, in Figure 12, we plot the fraction of the sum capac-
ity that is achieved, allowing for a fixed outage probability,
by the proposed protocol where we consider both the ideal
performance achieved as captured by the symmetric capacity
and the rate achieved using IF in conjunction with SIC. As can
be observed, the performance of IF-SIC for small outage
probabilities is very close to the theoretical limits of the
considered transmission protocol. We note, however, that as
the number of users increases (and also, as the sum-capacity
increases), the problem of finding a “good” integer matrix (as
required in IF equalization) becomes computationally difficult
and may result in compromised rates when using practical
sub-optimal algorithms such as the LLL algorithm to find
candidate integer matrices.

VII. CONCLUSION

We analyzed the performance of a simple communication
protocol for transmission over the scalar Rayleigh-fading
MAC, where all users transmit at just below the symmetric
capacity (normalized per user) of the channel. Tight bounds
were established on the distribution of the achievable rate
of the protocol. The derived bounds may be viewed as a
significant tightening of the diversity multiplexing tradeoff
analysis of the channel. It was further demonstrated that
integer-forcing equalization in conjunction with “space-time”
precoding (over the time axis only) offers a practical means
to approach the theoretical limits of the proposed protocol.
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